Учеба  ->  Среднее образование  | Автор: | Добавлено: 2015-03-23

Решение уравнений с двумя переменными

Решение уравнений в целых числах является одной из древнейших математических задач. Уже в начале 2 тысячелетия до н. э. Вавилоняне умели решать системы таких уравнений с двумя переменными. Наибольшего расцвета эта область математики достигла в Древней Греции. Основным источником для нас является «Арифметика» Диофанта, содержащая различные типы уравнений. В ней Диофант (по его имени и название уравнений – диофантовы уравнения) предвосхищает ряд методов исследования уравнений 2-ой и 3-ой степеней, развившихся только в 19 веке.

Простейшие диофантовы уравнения ах + ву = 1( уравнение с двумя переменными, первой степени) х2 + у2 = z2 ( уравнение с тремя переменными, второй степени)

Наиболее полно изучены алгебраические уравнения, их решение было одной из важнейших задач алгебры в 16-17 вв.

К началу 19 века трудами П. Ферма, Л. Эйлера, К. Гаусса было исследовано диофантово уравнение вида: ах2 + вху + су2 + dx + ey + f = 0, где a, в, с, d, e, f числа; х, у неизвестные переменные.

Это уравнение 2-ой степени с двумя неизвестными.

К. Гаусс построил общую теорию квадратичных форм, являющуюся основой решения некоторых типов уравнений с двумя переменными (диофантовых уравнений). Существует большое число конкретных диофантовых уравнений, решаемых элементарными способами. /p>

Теоретический материал.

В этой части работы будут описаны основные математические понятия, даны определения терминов, сформулирована теорема о разложении с использованием метода неопределенных коэффициентов, которые были изучены и рассмотрены при решении уравнений с двумя переменными.

Определение 1: Уравнение вида ах2 + вху + су2 + dx + ey + f = 0, где a, в, с, d, e, f числа; х, у неизвестные переменные называется уравнением второй степени с двумя переменными.

В школьном курсе математики изучается квадратное уравнение ах2+вх +с=0 , где а,в,с числа х переменная, с одной переменной. Существует много способов решения такого уравнения:

1. Нахождение корней, используя дискриминант;

2. Нахождение корней для четного коэффициента в (по Д1=);

3. Нахождение корней по теореме Виета;

4. Нахождение корней с помощью выделения полного квадрата двучлена.

Решить уравнение – значит, найти все его корни или доказать, что их нет.

Определение 2: Корень уравнения – это число, которое при подстановке в уравнение образует верное равенство.

Определение 3: Решение уравнения с двумя переменными называется пара чисел (х,у) при подстановки которых в уравнение, оно превращается в верное равенство.

Процесс разыскивания решений уравнения очень часто заключается обычно в замене уравнения равносильным уравнением, но более простым при решении. Такие уравнения называются равносильными.

Определение 4: Два уравнения называются равносильными, если каждое решение одного уравнения является решением другого уравнения, и наоборот, причем оба уравнения рассматриваются в одной и той же области.

Для решения уравнений с двумя переменными используют теорему о разложении уравнения на сумму полных квадратов (методом неопределенных коэффициентов).

Для уравнения второго порядка ах2 + вху + су2 + dx + ey + f = 0 (1) имеет место разложение а(х +ру +q)2 + r(y+s)2 +h (2)

Сформулируем условия, при которых имеет место разложение (2) для уравнения (1) двух переменных.

Теорема: Если коэффициенты а,в,с уравнения (1) удовлетворяют условиям а0 и 4ав – с20, то разложение (2) определяется единственным способом.

Другими словами уравнение (1) с двумя переменными можно с помощью метода неопределенных коэффициентов привести к виду (2), если выполнены условия теоремы.

Рассмотрим на примере, как реализуется метод неопределенных коэффициентов.

СПОСОБ №1. Решить уравнение методом неопределенных коэффициентов

2 х2 + у2 + 2ху + 2х +1= 0.

Решение:

1. Проверим выполнение условия теоремы, а=2, в=1, с=2, значит, а=2,4ав – с2= 4∙2∙1- 22= 40.

2. Условия теоремы выполнены, можно разложить по формуле (2).

3. 2 х2 + у2 + 2ху + 2х +1= 2(х + py + q)2 + r(y +s)2 +h, исходя из условий теоремы обе части тождества равносильны. Упростим правую часть тождества.

4. 2(х + py + q)2 + r(y +s)2 +h =

= 2(х2+ p2y2 + q2 + 2pxy + 2pqy + 2qx) + r(y2 + 2sy + s2) + h =

= 2х2+ 2p2y2 + 2q2 + 4pxy + 4pqy + 4qx + ry2 + 2rsy + rs2 + h =

= x2(2) + y2(2p2 + r) + xy(4p) + x(4q) + y(4pq + 2rs) + (2q2 + rs2 + h).

5. Приравниваем коэффициенты при одинаковых переменных с их степенями.

х2 2 = 2 у21 = 2p2 + r) ху2 = 4p х2 = 4q у0 = 4pq + 2rs х01 = 2q2 + rs2 + h

6. Получим систему уравнений, решим ее и найдем значения коэффициентов.

7. Подставим коэффициенты в (2), тогда уравнение примет вид

2 х2 + у2 + 2ху + 2х +1= 2(х + 0,5y + 0,5)2 + 0,5(y -1)2 +0

Таким образом, исходное уравнение равносильно уравнению

2(х + 0,5y + 0,5)2 + 0,5(y -1)2 = 0 (3), это уравнение равносильно системе двух линейных уравнений.

Ответ: (-1; 1).

Если обратить внимание на вид разложения (3), то можно заметить, что оно по форме идентично выделению полного квадрата из квадратного уравнения с одной переменной: ах2 + вх + с = а(х +)2 +.

Применим этот прием при решении уравнения с двумя переменными. Решим с помощью выделения полного квадрата уже решенное с использованием теоремы квадратное уравнение с двумя переменными.

СПОСОБ №2: Решить уравнение 2 х2 + у2 + 2ху + 2х +1= 0.

Решение: 1. Представим 2х2 в виде суммы двух слагаемых х2 + х2 + у2 + 2ху + 2х +1= 0.

2. Сгруппируем слагаемые таким образом, чтобы можно было свернуть по формуле полного квадрата.

(х2 + у2 + 2ху) + (х2 + 2х +1)= 0.

3. Выделим полные квадраты из выражений в скобках.

(х + у)2 + (х + 1)2 = 0.

4. Данное уравнение равносильно системе линейных уравнений.

Ответ: (-1;1).

Если сравнить результаты, то видно, что уравнение, решенное способом №1 с использованием теоремы и методом неопределенных коэффициентов и уравнение, решенное способом №2, с помощью выделения полного квадрата имеют одинаковые корни.

Вывод: Квадратное уравнение с двумя переменными можно разлагать на сумму квадратов двумя способами:

➢ Первый способ – это метод неопределенных коэффициентов, в основе которого лежит теорема и разложение (2).

➢ Второй способ – с помощью тождественных преобразований, позволяющих выделить последовательно полные квадраты.

Конечно же, при решении задач второй способ является предпочтительнее, т. к. не требует запоминания разложения (2) и условия.

Этот метод можно применять и для квадратных уравнений с тремя переменными. Выделение полного квадрата в таких уравнениях более трудоемко. Такого вида преобразованиями я буду заниматься в следующем году.

Интересно заметить, что функцию, имеющую вид: f(х,у)= ах2 + вху + су2 + dx + ey + f, называют квадратичной функцией двух переменных. Квадратичным функциям принадлежит важная роль в различных разделах математики:

• В математическом программировании (квадратичное программирование)

• В линейной алгебре и геометрии (квадратичные формы)

• В теории дифференциальных уравнений ( приведение линейного уравнения второго порядка к каноническому виду).

При решении этих различных задач, приходится, по сути, применять процедуру выделения полного квадрата из квадратного уравнения (одной, двух и более переменных).

Линии, уравнения которых, описываются квадратным уравнением двух переменных, называются кривыми второго порядка.

Это окружность, эллипс, гипербола.

При построении графиков этих кривых так же используется метод последовательного выделения полного квадрата.

Рассмотрим, как работает метод последовательного выделения полного квадрата на конкретных примерах.

Практическая часть.

Решить уравнения, методом последовательного выделения полного квадрата.

1. 2х2 + у2 + 2ху + 2х + 1 = 0; х2 + х2 + у2 + 2ху + 2х + 1 = 0;

(х +1 )2 + (х + у)2 = 0;

Ответ:(-1;1).

2. х2 + 5у2 + 2ху + 4у + 1 = 0; х2 + 4у2 + у2 + 2ху + 4у + 1 = 0;

(х + у)2 + (2у + 1)2 = 0;

Ответ:(0,5; - 0,5).

3. 3х2 + 4у2 - 6ху - 2у + 1 = 0;

3х2 + 3у2 + у2 – 6ху – 2у +1 = 0;

3х2 +3у2 – 6ху + у2 –2у +1 = 0;

3(х2 - 2ху +у2) + у2 - 2у + 1 = 0;

3(х2 - 2ху + у2)+(у2 - 2у + 1)=0;

3(х-у)2 + (у-1)2 = 0;

Ответ:(-1;1).

Решить уравнения:

1. 2х2 + 3у2 – 4ху + 6у +9 =0

(привести к виду: 2(х-у)2 + (у +3)2 = 0)

Ответ: (-3; -3)

2. – 3х2 – 2у2 – 6ху –2у + 1=0

( привести к виду: -3(х+у)2 + (у –1)2= 0)

Ответ: (-1; 1)

3. х2 + 3у2+2ху + 28у +98 =0

( привести к виду: (х+у)2 +2(у+7)2 =0)

Ответ: (7; -7)

Заключение.

В данной научной работе были изучены уравнения с двумя переменными второй степени, рассмотрены способы их решения. Поставленная задача выполнена, сформулирован и описан более краткий способ решения, основанный на выделении полного квадрата и замене уравнения на равносильную систему уравнений, в результате упрощена процедура нахождения корней уравнения с двумя переменными.

Важным моментом работы является то, что рассматриваемый прием применяется при решении различных математических задач связанных с квадратичной функцией, построением кривых второго порядка, нахождением наибольшего (наименьшего) значения выражений.

Таким образом, прием разложения уравнения второго порядка с двумя переменными на сумму квадратов имеет самые многочисленные применения в математике.

Комментарии


Войти или Зарегистрироваться (чтобы оставлять отзывы)