Развлечения  ->  Непознанное  | Автор: | Добавлено: 2015-03-23

Силлогизмы. Логические парадоксы

Есть такая наука, она называется логикой, которая учит, как нужно рассуждать, чтобы наше мышление было определенным, связным, последовательным, доказательным и непротиворечивым. Как человек, не знающий правил арифметики и грамматики, не знающий правил логики, не может без ошибок рассуждать и действовать.

Человеку, занимающемуся математикой, очень часто приходится определять понятия, выяснять связи между ними, рассматривать, на какие группы (виды) могут быть подразделены фигуры, числа, уравнения функции. Но особенно часто в математике приходится путем рассуждений выводить разнообразные формулы, правила и доказывать теоремы. Не случайно находились такие математики, которые думали, что математика – это наука «о производстве необходимых умозаключений». Такой взгляд на математику односторонен, но верно то, что без логики не может быть математики. А это значит, что для успешного изучения математики надо настойчиво учиться правильно рассуждать. Это значит также, что само изучение математики очень полезно для овладения правилами и законами мышления. Не без оснований называют иногда математику «оселком для ума».

Логика – абстрактная наука. В ней нет экспериментов, нет даже фактов в обычном смысле этого слова. Строя свои системы, логика исходит в конечном счете из анализа реального мышления. Но результаты этого анализа носят синтетический характер. Они не являются констатациями каких-либо отдельных процессов или событий, которые должна была бы объяснить теория. Такой анализ нельзя назвать наблюдением: наблюдается всегда конкретное явление.

Исследование всевозможных логических цепочек (силлогизмов) привело к обнаружению знаменитых парадоксов и софизмов. Парадокс – ситуация, когда в теории доказываются два взаимно исключающие друг друга суждения, причем каждое из этих суждений выведено убедительными с точки зрения данной теории средствами.

Простой категорический силлогизм – рассуждение, состоящее из трёх простых атрибутивных высказываний: двух посылок и одного заключения. Посылки силлогизма разделяются на большую (которая содержит предикат заключения) и меньшую (которая содержит субъект заключения).

Пример силлогизма:

Всякий человек смертен (большая посылка)

Сократ – человек (меньшая посылка)

Сократ смертен (заключение)

Цель работы: в этой работе я продолжу развивать мысль своей прошлой работы. Я рассмотрю более подробно софизмы, познакомлю вас с логическими цепочками и с великим человекам, открывшие нам их законы. Изучу несколько новых парадоксов. А также опровергну или найду подтверждения своей гипотезе.

Гипотеза: при решении софизмов и парадоксов используется логика.

Логика ведет своё происхождение от ораторского искусства. Убедить собеседника невозможно, если оратор сам себе противоречит (уж если ты сказал, что снег белый, не следует ссылаться на его черноту). В Древней Греции, где важнейшие вопросы решались на советах, всякий уважающий себя философ, политический деятель или литератор старался строить речь так, чтобы она была доходчива и разумна. В античном мире чрезвычайно ценилось умение высказываться точно, кратко и остроумно.

Любовь к точной фразе привела древнегреческих философов к логике. Что из чего следует и почему? Можно ли, например, утверждать, что Сократ смертен, если дано, что все люди смертны и Сократ человек? Можно. А если дано, что все люди смертны и Сократ тоже смертен, верно ли, что Сократ человек? Неверно: вдруг Сократом зовут не только греческого мудреца, но и, скажем, его собаку?

Законы логики, правила вывода верных утверждений из заданных посылок наиболее полно исследовал великий древнегреческий философ Аристотель.

АРИСТОТЕЛЬ (384-322 до н. э. )

В 366 году до нашей эры в Академии Платона появился новый ученик. Он был родом из Стагира, и было ему 18 лет. Ученика звали Аристотель.

Почти 20 лет провел Аристотель в Академии. Из ученика он превратился в мудреца-философа, соперничавшего в знаниях и глубокомыслии с самим Платоном. Это соперничество подчас становилось весьма острым, но ни разу научные споры Платона с Аристотелем не переросли в личную вражду.

Вскоре после смерти Платона Аристотель покинул Академию. Македонский царь Филипп пригласил его воспитывать царевича Александра. В 335г. до н. э. Аристотель вернулся из Македонии в Афины, где основал собственную школу. Её название – Ликей – вошло впоследствии в латинский и во многие другие языки, изменившись на одну букву: лицей.

Вслед за Платоном, Аристотель считал, что достоверное знание может и должно быть выведено из исходных, несомненных истин – аксиом – при помощи логических рассуждений. Но Аристотель пошел дальше Платона: он описал законы логики, которые позволяют переходить от одного истинного суждения к другому без риска совершить ошибку.

Вот несколько законов, сформулированных Аристотелем. Сякое суждение либо истинно, либо ложно. Ни одно суждение не может быть истинным и ложным одновременно. Из общих утверждений следуют частные (например, из того, что все люди смертны, следует, что Сократ тоже смертен). В течение многих веков научный авторитет Аристотеля был непререкаем.

«ИЛИ», «И», «ЕСЛИ» И «НЕ»

Всякое высказывание может быть истинным или ложным. Третий вариант трудно себе представить, поэтому древнегреческие философы и пользовались «принципом исключенного третьего» - считали, что не может утверждение быть и не истинным, и не ложным. Вслед за ними так считаем и мы. Логика без принципа «исключенного третьего» упоминается разве лишь в фантастических романах, да и то в шутку

А теперь попробуем собрать одно высказывание из двух частей. Как мы часто это делаем, соединим две фразы словечком «или». «В углу шуршит мышь или крокодил». Верно ли это высказывание? Зависит от того, кто на самом деле шуршит в углу. Если это и вправду мышь, фраза верна. Если (как ни трудно себе такое представить) это крокодил, опять же высказывание верно. Если в углу дружно шуршат мышь с крокодилом, она верна снова! И лишь если в углу нет ни мыши, ни крокодила, а шуршит сбежавший из клетки хомяк, высказывание оказывается ложным. Это – свойство, присущее именно «или»: два утверждения, связанные этим словом, составляют верное высказывание, если хотя бы одно из утверждений справедливо, и ложное, если оба утверждения неверны. А теперь составим маленькую табличку (здесь И – «истинное утверждение», Л – «ложное»):

И или И = И,

И или Л = И,

Л или И = И.

Л или Л = Л.

Сравним теперь, как себя ведет связка «и». Разберем пример: «Мимо окна летят воробей и летающая тарелка». Если за окном нет ни воробья, ни тарелки, это высказывание ложно. Если воробей есть, а тарелки нет – оно все равно ложно. Если есть тарелка, но нет воробья – то же самое. И лишь одновременное присутствие обоих означает. Что фраза истинна. Вот таблица истинности для словечка «и»:

И и И = И,

И и Л = Л,

Л и И = Л,

Л и Л = Л.

Фраза, связанная этим словом, верна в том единственном случае, когда верна в том единственном случае, когда верны обе части!

В этом тексте несколько раз употреблялась конструкция фразы «если так, то будет эдак». Посмотрим, когда верно утверждение такого типа? Оно верно, если верна первая часть (посылка) и одновременно верна вторая (заключение). Оно неверно, если верна посылка, но неверен вывод: несомненно ложным является высказывание «если разбить чашку, то будет землетрясение». А если посылка неверна? Может показаться невероятным, но в этом случае высказывание истинно. Из ложной посылки следует что угодно! На самом деле ничего удивительного в этом нет: вам самим случалось, и не раз, употреблять фразы вроде «если 2х2=5, то я папа римский». Попробуйте доказать, что такое утверждение ложно! Оно означает лишь, что 2х2 не равно пяти, и вы не папа римский, следовательно, оно истинно. Получим такую таблицу истинности:

И → И = И,

И → Л = Л,

Л → И = И,

Л → Л = И.

«И» и «или» - это элементарные действия логики, так же как сложение и умножение – это действия арифметики. Между логическими и арифметическими операциями есть некоторое сходство, и сейчас мы его продемонстрируем. Пусть у нас только две цифры, 0 и 1. Будем обозначать истину единицей, а ложь – нулем. Тогда наша табличка истинности для «или» напоминает таблицу двоичного сложения: 0+0=0; 1+0=1; 0+1=1, и только для «сложения» двух истин (1+1=1) мы получим не тот ответ, который дает нам двоичная арифметика ( там 1+1=10), но по большому счету он не слишком сильно отличается от арифметического, ибо нуля мы не получим все равно. Результат же логического умножения – «и» - полностью совпадает с арифметическим: 0х0=0, 1х0=0, 0х1=0, 1х1=1.

Аналога операции «если» на первый взгляд в арифметике нет. Но если ввести ещё одно логическое действие, не рассмотренное нами подробно – «не», отрицание, устроенное чрезвычайно просто (не истина есть ложь, не ложь есть истина, т. е. в чистом виде закон исключенного третьего), - оказывается, можно выразить «если» через «или», «и» и «не». Самом деле , конструкция «А и В, или не А» ведет себя точно так же, как «если А, то В». Если А истинно, то не А ложно, и истинность всего высказывания зависит от истинности В; если же А ложно, то не А истинно, и независимо от истинности или ложности В высказывание будет верным.

Мы не зря упомянули здесь арифметическую аналогию логических операций. Поскольку можно (с некоторыми поправками) выразить цифрами и арифметическими знаками истинность или ложность высказываний, то можно научить логике вычислительную машину. Ей будут доступны все логические рассуждения, сколь угодно сложные – нужно лишь выразить их через «и», «или» и «не».

ПАРАДОКСЫ.

Парадокс (от греческого para – протии и doxa – мнение) – противоречивое высказывание.

В широком смысле парадокс – неочевидное высказывание, истинность которого устанавливается трудно; в этом смысле парадоксальными принято называть любые неожиданные противоречивые высказывания, особенно если неожиданность их смысла выражена в остроумной форме.

В математике парадокс – ситуация, когда в данной теории доказываются два взаимоисключающих суждения, причем каждое из этих суждений выведено убедительными с точки зрения данной теории средствами, т. е. парадокс – высказывание, которое в данной теории равным образом может быть доказано и как истина, и как ложь.

Парадоксы, как правило, свидетельствуют о недостатках рассматриваемой теории, о её внутренней противоречивости. В науке очень часто обнаружение парадокса в рамках данной теории приводило к существенной перестройке всей теории и служило стимулом для дальнейших более глубоких исследований. В математике анализ парадоксов способствовал как пересмотру взглядов на проблему обоснования, так и развитию многих современных идей и методов. Этими вопросами занимается наука, называемая математической логикой.

СОБАКА И ЗАЯЦ

На охоте собака погналась за зайцем, находившимся от неё на расстоянии 100 сажен, но не догнала его. Охотники были весьма огорчены подобной неудачей, но вот один из них и говорит: «Эх, господа, стоит ли расстраиваться из-за такого пустяка? Да и стоит ли вообще гонять собак за зайцами? Всё равно собака его никогда догнать не сможет, даже в том случае, если побежит со скоростью в 10 раз большею. »

- Как так?! – изумились охотники. – Что за вздор?

- Какой там вздор, господа! Вовсе не вздор! И я вас уверяю, что всегда так будет!

- Ну, что за чепуха! - сказали слушавшие. – Объясните, пожалуйста, как это может случиться?

- А вот как1 Положим, например, что собаку вначале отделяет от зайца расстояние в 100 сажен. Если даже собака будет бежать в 10 раз скорее зайца, то когда она пробежит эти 100 сажен, заяц успеет пробежать ещё 10 сажен. Когда собака пробежит и эти 10 сажен, заяц пробежит ещё 1 сажень, и все-таки будет впереди собаки; когда собака пробежит и эту сажень, то заяц пробежит снова 1/10 сажени и т. д. Таким образом, заяц всегда будет впереди собаки, хотя бы на небольшое расстояние. Следовательно, собака никогда не догонит зайца. Этот парадокс известен очень давно и носит название «парадокс Зенона об Ахиллесе и черепахе».

КУЧА ПЕСКА

Два приятеля однажды вели такой разговор. «Видишь кучу песка?» - спросил первый. «Я-то её вижу, - ответил второй, - но её нет на самом деле». Первый удивился: «Почему?» -Очень просто,- ответил второй. - Давай рассудим: одна песчинка, очевидно, не образует кучи песка. Если n песчинок не могут образовать кучи песка, то и после прибавления ещё одной песчинки они по-прежнему не могут образовать кучи. Следовательно, никакое число песчинок не образует кучи, т. е. кучи песка нет. Этот парадокс носит название «парадокс кучи».

ПАРАДОКС «ЛЖЕЦ»

Наиболее известным и самым интересным из всех логических парадоксов является парадокс «Лжец». «Я – лжец» - говорит некто и впадает в неразрешимое противоречие! Ведь если он действительно лжец, он солгал, говоря, что он лжец, и, следовательно, он не лжец; но если он не лжец, он сказал правду и, следовательно, он лжец.

Парадокс «Лжец» произвел громадное впечатление на греков. И легко понять почему. Вопрос, который в нем ставится, с первого взгляда кажется совсем простым: лжет ли тот, кто говорит только то, что он лжет? Но ответ «да» приводит к ответу «нет», и наоборот. И размышление ничуть не проясняет ситуацию. За простотой и даже обыденностью вопроса оно открывает какую-то неясную и неизмеримую глубину.

Ходит даже легенда, что некий Филлит Косский, отчаявшись разрешить этот парадокс, покончил с собой. Говорят также, что один из известных древнегреческих логиков, Диодор Кронос, уже на склоне лет дал обет не принимать пищу до тех пор, пока не найдет решение «Лжеца», и вскоре умер, так ничего и не добившись.

СОФИЗМЫ

Софизмом называется умышленное умозаключение, которое имеет видимость правильного. Каков бы ни был софизм, он обязательно содержит одну или несколько замаскированных ошибок. Особенно часто в математических софизмах выполняются «запрещенные» действия или не учитываются условия применимости теорем, формул и правил. Иногда рассуждения ведутся с использованием ошибочного чертежа или опираются на приводящие к ошибочным заключениям «очевидности». Встречаются софизмы, содержащие и другие ошибки.

В истории развития математики софизмы играли существенную роль. Они способствовали повышению строгости математических рассуждений и содействовали более глубокому уяснению понятий и методов математики.

Чем же полезны софизмы для изучающих математику?

Разбор софизмов прежде всего развивает логическое мышление, т. е. прививает навыки правильного мышления. Обнаружить ошибку в софизме – это значит осознать её, а осознание ошибки предупреждает от повторения её в других математических рассуждениях.

Разбор софизмов помогает сознательному усвоению изучаемого математического материала, развивает наблюдательность, вдумчивость и критическое отношение к тому, что изучается. Математические софизмы приучают внимательно и настороженно продвигаться вперед, тщательно следить за точностью формулировок, правильностью записей и чертежей, за допустимостью обобщений, за законностью выполняемых операций.

Наконец, разбор софизмов увлекателен. Только очень сухого человека не может увлечь интересный софизм. Как приятно бывает обнаружить ошибку в математическом софизме и тем как бы восстановить истину в её правах. Рассмотрим некоторые софизмы.

СОФИЗМ «РОГАТЫЙ»

То, что ты не потерял, ты имеешь; ты не потерял рога, следовательно, ты их имеешь.

Решение:

Ошибка здесь состоит в неправильном переходе от общего правила к частному случаю, который этим правилом не предусмотрен. Действительно, начало первой фразы: «То, что ты не потерял» подразумевает под словом «то» - всё, что ты имеешь, и ясно, что в него не включены «рога». Поэтому заключение «ты имеешь рога» неправомерно.

РАВЕН ЛИ ПОЛНЫЙ СТАКАН ПУСТОМУ?

Оказывается, что да. Действительно, проведем следующее рассуждение. Пусть имеется стакан, наполненный водой до половины. Тогда можно написать, что стакан, наполовину полный равен стакану, наполовину пустому. Увеличивая обе части равенства вдвое, получим, что стакан полный равен стакану пустому.

Ясно, что приведенное рассуждение неверно, так как в нем применяется неправомерное действие: увеличение вдвое. В данной ситуации его применение бессмысленно.

ПОСЛЕДНИЕ ГОДЫ НАШЕЙ ЖИЗНИ КОРОЧЕ, ЧЕМ ПЕРВЫЕ.

Известно старое изречение: в молодости время идёт медленнее, а в старости скорее. Это изречение можно доказать математически. Действительно, человек в течение тридцатого года проживает 1/30 часть своей жизни, в течение сорокового года – 1/40 часть, в течение пятидесятого – 1/50 часть, в течение шестидесятого – 1/60 часть. Совершенно очевидно, что

1/30>1/40>1/50>1/60, откуда ясно, что последние годы нашей жизни короче первых.

Не подвела ли математика?

Решение:

Действительно, верно, что 1/30>1/40>1/50>1/60. Но неверно утверждение, что в течение тридцатого года человек проживает 1/30 часть своей жизни, он проживает 1/30 только той части жизни, которую он к этому моменту прожил, но именно части, а не всей жизни. Нельзя сравнивать между собой части различных отрезков времени.

ДВАЖДЫ ДВА РАВНО ПЯТИ.

Напишем тождество 4:4=5:5. Вынеся их каждой части тождества общие множители за скобки, получаем : 4∙ (1:1) = 5∙ (1:1) или (2 ∙2) ∙ (1:1) = 5∙ (1:1).

Так как 1:1=1, то 2∙2=5.

Решение:

Ошибка сделана при вынесении общих множителей 4 из левой части и 5 из правой части. Действительно, 4:4=1:1, но 4:4 ≠ 4∙(1:1).

ЛЮБОЕ ЧИСЛО РАВНО НУЛЮ.

Пусть a – любое фиксированное число. Рассмотрим уравнение 3х2-3ах+а2=0. Перепишем его следующим образом: 3х2-3ах=-а2. Умножая обе части его на –а, получим уравнение -3х2а+3а2х=а3. Прибавляя к обеим частям этого уравнения х3-а3, получаем уравнение х3-3ах2+3а2х-а3=х3 или (х-а)3=х3, откуда х-а=х, т. е. а=0.

Решение:

При а≠0 не существует числа х, удовлетворяющего уравнению 3х2-3ах+а2=0. Это следует из того, что дискриминант этого квадратного уравнения D= -3а2<0 при а≠0. Следовательно, нельзя прибавлять к обеим частям уравнения несуществующее число х3-а3. Конечно, всё написанное можно интерпретировать и так: если х – корень уравнения 3х2-3ах+а2=0, то проведённые выкладки показывают, что уравнение имеет решение лишь при а=0.

В ходе работы моя гипотеза подтвердилась: софизмы и парадоксы строятся исключительно по законам логики.

Рассмотренные парадоксы и софизмы – это только часть из всех обнаруженных к настоящему времени. Вполне вероятно, что в будущем откроют и многие другие парадоксы, и даже совершенно новые их типы.

С течением времени отношение к парадоксам стало более спокойным и даже более терпимым, чем в момент их обнаружения. Дело не только в том, что парадоксы сделались чем-то привычным. И не в том, что с ними смирились. Поиски их решений активно продолжаются. Ситуация изменилась прежде всего потому, что парадоксы оказались локализованными. Они обрели своё определенное место в широком спектре логических исследований. Стало ясно, что абсолютная строгость – это в принципе недостижимый идеал.

О многом шла речь в этой работе. Ещё больше интересных и важных тем осталось за её пределами. Логика – это особый, самобытный мир со своими законами, условностями, традициями, спорами. То, о чем говорит эта наука, знакомо и близко каждому. Но войти в её мир, почувствовать его внутреннюю согласованность и динамику, проникнуться его своеобразным духом непросто.

Комментарии


Войти или Зарегистрироваться (чтобы оставлять отзывы)