Учеба  ->  Науки  | Автор: | Добавлено: 2015-03-23

Признаки равенства четырехугольников

При изучении признаков равенства треугольников в курсе геометрии 7 класса возникли вопросы: Существуют ли признаки равенства четырёхугольников? Если да, то по скольким элементам? Можно ли их сформулировать и доказать, опираясь на признаки равенства треугольников?

Цель: Сформулировать и доказать признаки равенства четырёхугольников.

Задачи: 1) Изучить литературу по данной теме.

2) Исследовать все различные комбинации наборов сторон и углов из четырёх элементов и, либо доказать признак, либо опро- вергнуть его, приведя контрпример.

3) Исследовать все случаи различных комбинаций из 5 элементов, сформулировать и доказать признак, либо опровергнуть.

1)Определение 1.

Две геометрические фигуры называются равными, если их можно совместить наложением.

Определение 2.

Два четырехугольника называются равными, если их можно совместить наложением.

Гипотеза 1.

Существуют признаки равенства четырехугольников по четырем элементам.

Таблица №1

ПО ЧЕТЫРЁМ УГЛАМ

∠A=∠A1, ∠B=∠B1

ВЫВОД: ABCD!=A1B1CD

2)ПО ТРЁМ УГЛАМ И СТОРОНЕ а)

ВЫВОД:ABCD!=ABC1D1

∠C=∠C1, ∠B= ∠B1

ВЫВОД: ABCD!=AB1C1D_

3)ПО ДВУМ УГЛАМ И ДВУМ СТОРОНАМ а)

ВЫВОД: ABCD!=ABCD1

ВЫВОД: ABCD!=ABCD1

BC= BC1

ВЫВОД: ABCD!=ABC1D1

ВЫВОД: ABCD!=ABCD1

BC=B1C1, BCB1C1

ВЫВОД: ABCD!=AB1C1D

CB=C1B1, CBC1B1

ВЫВОД: ABCD!=AB1C1D

4) ПО УГЛУ И ТРЁМ СТОРОНАМ а) BC=BC1

ВЫВОД: ABCD!=ABC1D

DC=DC1, BC=BC1

ВЫВОД: ABCD!=ABC1D1

5)ПО ЧЕТЫРЁМ СТОРОНАМ

BC=BC1, CD=CD1, AD=AD1

ВЫВОД: ABCD!=ABC1D1

(смотри Приложение №1 - с. 29 )

ПРИЗНАКОВ РАВЕНСТВА ЧЕТЫРЁХУГОЛЬНИКОВ ПО ЧЕТЫРЁМ

ЭЛЕМЕНТАМ НЕ СУЩЕСТВУЕТ.

Гипотеза 2

Существуют признаки равенства четырёхугольников по пяти элементам.

Таблица№2

Признак 1

Если четыре стороны и угол одного четырёхугольника соответственно равны четырём сторонам и углу другого четырёхугольника, то такие четырёхугольники равны.

ABCD И A[]B[]C[]D[]- четырёхугольники. AB=A[]B[], BC= B[]C[], CD=C[]D[],

DA=D[]A[],∠A=∠A[].

Доказать:

ABCD=A[]B[]C[]D[]

Доказательство:

Вывод: Т. к. соответственные стороны и соответственные углы четырёхугольников равны, то они совместятся наложением, а значит- по определению равных фигур - ABCD=A[]B[]C[]D[].

Признак 2

Если три стороны и два угла между ними одного четырёхугольника соответственно равны трём сторонам и двум углам между ними другого четырёхугольника, то такие четырёхугольники равны.

Т. к. соответственные стороны и углы четырёхугольников равны, то они совместятся наложением, а значит- по определению равных

- фигур- ABCD=A[]B[]C[]D[].

Признак3

Если три стороны и два угла, не лежащие между ними, одного четырёхугольника соответственно равны трём сторонам и двум углам, не лежащим между ними, другого четырёхугольника, то такие четырёхугольники равны.

Примечание:

Случай, где углы четырёхугольника тупые доказывается аналогично, достаточно перейти к смежным, соответственно равным углам.

Признак 4

Если два противолежащих угла и три стороны одного четырёхугольника соответственно равны двум противолежащим углам и трём сторонам другого четырёхугольника, то такие четырёхугольники равны.

Вывод: ABCD!=AB1CD

Признак 5

Если три угла и две стороны между ними одного четырёхугольника соответственно равны трём углам и двум сторонам между ними другого четырёхугольника, то такие четырёхугольники равны.

Признак 6

Если три угла и две смежные стороны, не лежащие между ними, одного четырёхугольника, соответственно равны трём углам и двум сторонам, не лежащим между ними , другого четырёхугольника, то такие четырёхугольники равны.

Признак 7

Если три угла и две смежные стороны, одна из которых лежит между данными углами, одного четырёхугольника, соответственно равны трём углам и двум смежным сторонам, одна из которых лежит между двумя данными углами другого четырёхугольника, то такие четырёхугольники равны.

CBC1B1, CB=C1B1

∠C=∠C1, ∠B=∠B1

Вывод: ABCD!=AB1C1D

По стороне и четырём углам

∠C=∠C1, ∠B=∠B1

Вывод: ABCD!=AD1C1D

Методика исследований

Методы:

1) Эмпирические (изучение литературы, сбор сведений, сбор и обработка статистического материала)

2) Теоретические (сравнение и обобщение данных, составление таблиц)

3) Практические (построения с помощью циркуля и линейки, доказательства).

Этапы исследований

1) Изучение и исследование материала по теме.

2) Изучение проблемы.

3) Обработка материала и выработка практических рекомендаций.

Результаты исследований

1) Рассмотрев все различные наборы из четырёх элементов (сторон и углов) четырёхугольника, получили 12 случаев, к каждому из них с помощью циркуля и линейки привели контрпример, построив 2 неравных четырёхугольника по данным элементам.

2) Рассмотрев все различные наборы из 5 элементов четырёхугольника, получили 10 случаев, 7 из которых стали признаками равенства четырёхугольников, а к 3 случаям привели контрпример, построив неравные между собой четырёхугольники.

При изучении данной темы было установлено: существуют признаки равенства четырёхугольников по 5 элементам.

1. По 4 сторонам и углу: если четыре стороны и угол одного четырёхугольника соответственно равны четырем сторонам и углу другого четырёхугольника, то такие четырёхугольники равны.

2. По 3 сторонам и 2 углам между ними: если три стороны и два угла между ними одного четырёхугольника соответственно равны трем сторонам и двум углам между ними другого четырёхугольника, то такие четырёхугольники равны.

3. По 3 сторонам и 2 углам, не лежащим между ними: если три стороны и два угла, не лежащие между ними, одного четырёхугольника соответственно равны трем сторонам и двум углам, не лежащим между ними, другого четырёхугольника, то такие четырёхугольники равны.

4. По 2 противолежащим углам и 3 сторонам: если два противолежащих угла и три стороны одного четырёхугольника соответственно равны двум противолежащим углам и трем сторонам другого четырёхугольника, то такие четырёхугольники равны.

5. По 3 углам и 2 сторонам между ними: если три угла и две стороны между ними одного четырёхугольника соответственно равны трем углам и двум сторонам между ними другого четырёхугольника, то такие четырёхугольники равны.

6. По 3 углам и 2 смежным сторонам, не лежащим между ними: если три угла и две смежные стороны, не лежащие между ними, одного четырёхугольника соответственно равны трем углам и двум смежным сторонам, не лежащим между ними, другого четырёхугольника, то такие четырёхугольники равны.

7. По 3 углам и 2 смежным сторонам, одна из которых лежит между данными углами: если три угла и две смежные стороны, одна из которых лежит между данными углами, одного четырёхугольника соответственно равны трем углам и двум смежным сторонам, одна из которых лежит между данными углами другого четырёхугольника, то такие четырёхугольники равны.

Заключение

Была проделана работа по доказательству признаков равенства четырёхугольников. Для доказательства были использованы признаки равенства треугольников, определение равных фигур, геометрические построения с помощью циркуля и линейки.

В результате работы сформулировали и доказали 7 признаков по пяти элементам. Эти признаки могут быть полезны для тех, кто начинает изучать геометрию, учится сам формулировать и доказывать теоремы, а также в практической деятельности человека, например, при нахождении площадей.

Комментарии


Войти или Зарегистрироваться (чтобы оставлять отзывы)