Производство  ->  Металлургия  | Автор: | Добавлено: 2015-03-23

Коррозия металлов

Металл служит примером прочности. Недаром, когда хотят подчеркнуть это свойство, говорят: «прочный, как сталь». С понятием «металл», «металлический», «стальной» связано представление о чем-то неизменном, твердом, прочном.

Но если заглянуть в Исторический музей, где нас познакомят с остатками вооружения наших предков, извлеченных при раскопках древних могил, то мы увидим, что когда-то блестящие и прочные мечи, топоры, стальные кольчуги и другие металлические изделия потеряли блеск и прочность. Они покрыты не только толстым слоем ржавчины, но почти полностью разрушены. Такому разрушению подвергаются металлические предметы, не только оставленные в земле, но и находящиеся в сыром помещении.

Следовательно, металлы оказываются далеко не такими прочными, как об этом гласит народная молва. Под влиянием внешней среды, водных растворов кислот, солей и электрического тока они окисляются, в результате чего разрушаются.

Такого рода разрушение металлов получило название коррозии. В переводе с латинского “corrodere” означает – разъедать.

Почему же они разрушаются?

Как известно, все металлы, за исключением золота, платины, серебра, встречаются в природе в виде соединений с кислородом, серой, а также в виде солей серной, соляной и других кислот, т. е. в окисленном состоянии. Чтобы получить их в чистом виде, необходимо затратить химическую или электрическую энергию. Так, например, для получения железа из его руд строятся громадные доменные печи, в которых оно выплавляется. Из естественного, природного (окисленного) состояния они переводятся в металлическое состояние. Это состояние неустойчиво. Металл как бы стремится вновь перейти в то соединение, в котором изначально существовал в природе.

Коррозия металлов – это процесс перехода металла в то природное, естественное состояние, в котором мы встречаем его в земной коре.

Почему же все-таки при некоторых условиях металлы не так быстро переходят в свое естественное состояние, в оксиды или соли кислот? Одним из замечательных памятников старого Дели в Индии является минарет Кутуб-Минар, построенный в 1200 г. Во дворе минарета уже более тысячи лет стоит известная Делийская железная колонна. Эта колонна знаменита тем, что она не подверглась разрушающему действию коррозии. О Делийской колонне рассказывают много легенд, касающихся ее исключительной коррозийной стойкости.

Чем же объясняют исключительную коррозийную устойчивость металла, из которого сделана эта колонна? Есть разные версии её антикоррозийной устойчивости, но, скорее всего, высокую коррозийную стойкость колонны можно объяснить условиями, в которых она находится. Дело в том, что климат Дели, в особенности там, где находится колонна, очень сухой: относительная влажность в течение года не превышает 50-60%, а обычная – в пределах 30- 40%.

Английский ученый Вернон нашел, что при относительной влажности до 30% коррозия металла практически не наблюдается, при повышении же влажности до 60-70% наблюдается медленное увеличение коррозии. При влажности выше 70% коррозия резко возрастает и несколько снижается при влажности выше 90%.

Итак, вывод:

Коррозийная стойкость металлов в значительной мере зависит и от условий, в которых они находятся.

А) Результаты опыта.

Для ответа на многие вопросы, связанные со скоростью коррозии металла в зависимости от среды, мною был заложен опыт, и проводились наблюдения за ходом процесса окисления металла в течение семи дней. Было взято 7 стаканов воды, только в первом стакане вода была кипяченая. В остальных 6-ти случаях – вода сырая, то есть содержащая определенное количество растворенного в воде кислорода.

№1 Описание условий эксперимента

Железный гвоздь полностью погружен в кипяченую воду

Железный гвоздь погружен в некипяченую воду, он виден из воды

Железный гвоздь полностью погружен в некипяченую воду

Железный гвоздь погружен в некипяченую воду, он виден из воды, в воду добавлена поваренная соль (NaCl)

Железный гвоздь погружен в некипяченую воду, он виден из воды, в воду добавлена питьевая сода (NaHCO3)

Железный гвоздь погружен в воду, он виден из воды, в воды, к гвоздю прикручена алюминиевая проволока

Железный гвоздь погружен в воду, он виден из воды, к гвоздю прикручена медная проволока

Результаты наблюдения:

1-ый стакан: Вода кипяченая, полностью покрывает железный гвоздь. Необходимо отметить, что в этом стакане гвоздь покрылся налетом ржавчины, но толщина слоя по сравнению с другими стаканами – минимальная. То есть, в кипяченой воде скорость коррозии самая малая из-за отсутствия растворенного в воде кислорода.

Во 2-ом и в 3-ем стаканах - вода сырая. Во втором стакане гвоздь виден из воды, а в третьем – полностью погружен в воду. Во втором стакане, где гвоздь виден из воды, коррозия железа достигла большего размера, чем в стакане, где гвоздь полностью покрыт водой. То есть, на границе раздела воздух – вода металл больше подвергается коррозии, так как идет соприкосновение воды и металла с кислородом воздуха и процесс окисления железа ярче выражен.

Таким образом, вода, содержащая растворенный кислород (опыты №№ 2,3), значительно опаснее в коррозионном отношении, чем вода, не содержащая его (опыт №1).

В 4-ом стакане в воду была добавлена поваренная соль – хлорид натрия NaCl. Гвоздь в этом стакане покрылся толстым слоем ржавчины, коррозия значительна. Причина кроется в среде – в воду добавлен электролит – поваренная соль, которая способствует разъеданию металла. В морской воде также содержится большое количество поваренной соли и других солей, которые тоже являются прекрасными электролитами, что способствует более быстрому протеканию коррозии корпусов кораблей.

В 5-ом стакане в воду было добавлено небольшое количество питьевой соды, которая имеется у всех дома – NaHCO3 (гидрокарбонат натрия). Раствор питьевой соды имеет слабо выраженную щелочную среду. Но коррозия быстрее протекает в кислых и нейтральных средах, в которых имеются растворенный в воде кислород и ионы водорода (Н+). В щелочной же среде концентрация гидроксид-ионов (ОН-) преобладает над концентрацией ионов водорода, то есть фактически ионы водорода устранены, что не позволяет разрушаться металлу. Щелочная среда препятствует протеканию реакций окисления металла. И по результатам опыта было видно, что в этом стакане гвоздь по истечении семи дней остался без изменений.

Что произошло в 6-ом и 7-ом стаканах? Об этом – немного позднее.

Человек не только должен знать, почему разрушается металл, но и как сберечь его от разрушения, ибо трудно себе представить сейчас нашу жизнь без металла, который в жизни человеческого общества играет первостепенную роль. Из него делают тысячи различных предметов: станки, автомобили, тракторы, сложные аппараты, самолеты, реактивные двигатели. Наши города и села связаны металлическими линиями проводов.

По металлическим трубам, проложенным под землей, протекают реки нефти из одних районов в другие. По трубам же подается вода от центральной водопроводной станции города на фабрики, заводы и в наши квартиры. Но металл играет большую роль не только в промышленности, он окружает нас и в быту. Всюду металл, без него нельзя представить себе современную жизнь.

Одной из важнейших задач в настоящее время является не только увеличение производства металла, но и сохранение его от разрушения. Чтобы представить, какое значение имеет борьба с коррозией металлов, рассмотрим, какой вред она приносит. Подсчеты, которые были сделаны в начале 20-х годов ХХ века, показали, что за время с 1860 по 1920 года, то есть за 60 лет, было выплавлено чугуна во всем мире 1860 млн. тонн, а в результате коррозионных разрушений погибло 660 млн. тонн, что составляет около 33% от всего выплавленного металла.

Сейчас считают, что примерно около 10% всей ежегодно выплавляемой стали идет на покрытие безвозвратных потерь металла от коррозии. Наша страна ежегодно теряет 5-6 млн. тонн металла. Иначе говоря, буквально в пыль превращается годовая продукция крупного металлургического комбината.

Чтобы понять, как можно лучше защитить металл от коррозии, познакомимся с некоторыми свойствами металлов.

Б) Общие свойства металлов.

В настоящее время известно 110 химических элементов, из них почти 90 – металлы. Последние весьма распространены в природе и встречаются в виде различных соединений в недрах земли, водах рек, озер, морей, океанов, составе тел животных, растений и даже в атмосфере. Можно сказать, что соединения металлов находятся повсюду: в горных породах, в воде.

По своим свойствам металлы резко отличаются от неметаллов.

Периодический закон, установленный великим русским ученым Д. И. Менделеевым, представляет основу классификации химических элементов. Химические и физические свойства каждого элемента можно охарактеризовать, зная то место, которое занимает данный элемент в периодической системе; можно заранее сказать, какими химическими, а следовательно, и коррозионными свойствами обладает тот или иной элемент.

Русский ученый Николай Николаевич Бекетов расположил все металлы по своей активности в электрохимический ряд активности металлов:

В этом ряду каждый металл, стоящий левее, является более активным, по сравнению с правостоящим. Более активные металлы легче вступают в химические реакции, а, следовательно, легче окисляются. Так, мы видим, что алюминий является более активным металлом, чем железо, а медь – менее активным металлом по сравнению с тем же железом. Поэтому, при соприкосновении двух металлов различной активности они сразу образуют гальваническую пару, или гальванический элемент. В этом случае, металл, являющийся более активным, начинает энергично разрушаться (он активнее отдает свои электроны), следовательно, активнее подвергается коррозии, а металл, менее активный, остается в неизменном виде. Этот момент появления гальванической пары я и исследовала в двух последних случаях моего опыта. В стакан под № 6 был помещен гвоздь, который находился в контакте с алюминиевой проволокой. Сравнив расположение двух металлов в ряду активности, мы видим, что алюминий – более активен, чем железо, следовательно, разрушаться в воде должен именно этот металл. Мои наблюдения полностью подтвердили эту гипотезу: алюминиевая проволока за 7 дней покрылась рыхлым белым налетом гидроксида алюминия (Al(OH)3), а железный гвоздь совсем не изменился. В стакан № 7 я поместила гальваническую пару, состоящую из железного гвоздя и медной проволоки. Из результата опыта видно, что железо, как более активный металл, покрылся толстым слоем ржавчины, а медная проволока осталась без изменений.

Интересен один исторический факт. В начале XX века по заказу одного американского миллионера была построена роскошная яхта «Зов моря». Днище ее было обшито монель-металлом (это сплав меди и никеля), а рама руля, киль и другие детали были изготовлены из стали. Когда яхту спустили на воду, возник гигантский гальванический элемент, состоящий из катода – монель-металла, стального анода и раствора электролита – морской воды. Последствия были ужасными! Еще до выхода в открытое море яхта полностью вышла из строя, а «Зов моря» остался в истории мореплавания как пример конструкторской недальновидности и самонадеянного невежества.

В) Виды коррозии.

Этот вид коррозии, которая возникает в результате контакта двух различных металлов, получил название – электрохимическая коррозия.

Известны и другие виды коррозии металлов. Например, электрическая коррозия металла под воздействием блуждающих токов. Что это за токи и откуда они берутся?

Такой вид коррозии характерен в тех местах, где проложены рельсы для электропоездов. Электрический ток попадает в почву от линий метро, электричек, сварочных аппаратов из-за недостаточной изоляции. Подземные трубопроводы, кабельные сети и другие металлические сооружения, находящиеся под землей, подвергаются наибольшей коррозии. Чтобы понять действие блуждающего тока, рассмотрим простейшую схему:

Воздушный провод Эл. ток от станции

Рельс Эл. ток к станции

Труба 1 2 3

Ток поступает от электростанции в рабочий воздушный провод, от которого питается электропоезд, а обратно к станции электрический ток двигается по рельсам. Но очень часто рельсы соприкасаются с почвой, и часть тока ответвляется и направляется в землю. Если металлическая труба расположена вблизи токонесущих рельсов, то часть электрического тока потечет уже по трубе. Таким образом, можно разделить зоны движения тока по трубе, находящейся в почве, на три части:

1. Участок входа блуждающего тока из почвы на трубопровод. Эта зона не опасна для трубопровода.

2. Зона протекания блуждающего тока по трубопроводу. Данная зона также не вызывает изменений в трубопроводе.

3. Участок выхода блуждающего тока из металлического трубопровода в почву и далее на рельсы. Вот здесь то и возникает коррозия трубопровода. Она проявляется в виде глубоких язв или даже разрывов. Коррозионные разрушения зависят от величины блуждающего тока.

Для борьбы с блуждающими токами в настоящее время разработан ряд мероприятий. Во-первых, это тщательная изоляция токонесущих систем. Для защиты трубопроводов, прокладываемых в земле, применяют битумное покрытие.

Еще один интересный вид коррозии металлов – биокоррозия. Это новый вид коррозии. Известно, что коррозия протекает при участии микроорганизмов. Они выделяют продукты, которые могут вызывать коррозию. Биокоррозия изучена еще недостаточно. Но интересно отметить особый вид бактерий - так называемых железных, которые усваивают железо в виде ионов, для чего они выделяют продукты, разрушающие металл, переводящий его в соединения железа, то есть в окисленное состояние.

Особе место в коррозионном разрушении металлов занимает морская вода. А коррозия, возникающая в морской воде, получила название морской коррозии. В морской воде очень значительно содержание различных солей. Кроме того, в ней в растворенном состоянии всегда находятся газы: азот, кислород, углекислый газ, оксиды азота и другие.

В морской воде корродируют не только подводные части морских судов, но и периодически орошаемые надводные и палубные надстройки, а также металлические конструкции и сооружения, установленные в море. Морская коррозия приносит громадные потери народному хозяйству.

Г) Защита металлов от коррозии.

Вопрос о том, как защищать металлы от разрушения, является столь же древним, как и их применение. Можно сказать, что вместе с использованием металла возникла необходимость и его защиты. Однако научные методы защиты металлов от коррозии возникли много позже.

Разработка методов защиты тесно связана с изучением причин, вызывающих коррозию металлов. Первые научные основы изучения коррозии металлов были заложены гениальным русским ученым М. В. Ломоносовым.

Наряду с разработкой методов защиты металлов от коррозии в настоящее время получают новые вещества, которые с успехом могут заменять в некоторых изделиях металлы. Следовательно, борьба с коррозией металлов идет не только по пути защиты самих металлов, но и замены их коррозионно-стойкими материалами.

Все применяемые методы защиты металлов можно разделить на две группы.

Способы защиты:

Покрытие металла: Электрохимические методы защиты:

1. Металлические покрытия, гальванотехника. 1. Протекторная защита.

2. Неметаллические покрытия: покрытие красками, эмалями, лаками, смазками, оксидирование.

К первой группе относят различного рода покрытия. Сущность этого метода сводится к тому, что на поверхности металла создается та или иная пленка, защищающая поверхность металла от контакта с внешней средой. Покрытия в свою очередь делятся на металлические и неметаллические.

Ко второй группе относят электрохимические методы защиты.

Итак, первая группа защиты. Роль покрытия как средства защиты от коррозии большей частью сводится к тому, чтобы изолировать металл от внешней среды.

В качестве металлических покрытий корпусов изделий используют хром, никель, серебро и золото. Хромированные, никелированные, серебрённые и золочёные изделия имеют красивый внешний вид и в то же время коррозионно-стойки. Этот метод получил название гальванотехники. Часто металлические изделия, как говорят, «работают» в жидких средах, например в воде, растворах кислот, щелочей и солей. Здесь уже необходимы более сложные методы защиты. Из металлических покрытий для изделий, «работающих» в воде или во влажной атмосфере, широко применяют цинковые или оловянные покрытия: оцинкованные ведра, луженая посуда.

Из неметаллических покрытий часто используют покрытие эмалью, кислотоупорным лаком, различными смолами нефтяного происхождения, резиной. Многие из этих неметаллических покрытий являются очень стойкими, как, например, резина или фенолформальдегидные смолы, которые предохраняют металл даже в таких средах, как растворы соляной кислоты любой концентрации.

Часто на поверхность металла искусственно наносится оксидная пленка другого металла, которая является прочным веществом. Образование таких пленок получило название оксидирование. Оксидирование как средство защиты приборов, станков, а также основных частей огнестрельного оружия получило широкое распространение. Оксидирование не только играет защитную роль, но и придает изделиям красивую черную или синюю окраску. Поэтому очень часто оксидирование называют воронением, потому что окраска изделия в этом случае напоминает цвет воронова крыла.

Таким образом, мы видим, что выбор покрытия зависит от того, в каких условиях будет находиться изготовляемое металлическое изделие.

Из коррозионных разрушений металла мы наиболее часто встречаемся с ржавлением железа. Борьба с ржавлением железа и изделий из него имеет наибольшее значение в народном хозяйстве.

Рассматривая процесс ржавления металлов, я отметила, что если железо находится в контакте с другими металлами, то последние могут сильно изменить скорость ржавления. В одних случаях – контакта железа с медью (контакт с менее активным металлом) – скорость ржавления увеличивается, а в других, когда железо находится в контакте с алюминием, цинком (контакт железа с более активным металлом), наоборот, ржавление замедляется или полностью прекращается. Метод защиты металла способом создания гальванической пары получил название протекторная защита.

Цинк – один из наиболее широко применяемых металлов в протекторной защите. Кроме цинка, для этих целей используют сплавы магния и алюминия. Выбор протектора зависит от характера структуры металла, из которого изготовлена сама конструкция, а также условий, в которых находится данный металл.

Протекторную защиту обычно применяют для крупных сооружений: нефтехранилищ, танкеров, заводской арматуры, электрических кабелей, находящихся под землей, водопроводных труб, корпусов морских судов.

3. Заключение.

В своей работе я не ставила цель исследовать все существующие виды коррозии, их гораздо больше, чем я изложила. Но даже те виды коррозии, которые здесь представлены, уже говорят о значимости этой проблемы и путях ее решения. При изучении химии в дальнейшем мне еще предстоит более детальное знакомство с явлением разрушения металла под воздействием различных факторов. Но уже те немногие сведения, которые собраны здесь, думаю, заинтересуют тех ребят, которые прочтут данную работу, и помогут им в дальнейшем защитить свой собственный автомобиль, крышу дома, хозяйственный инвентарь от коррозии. А это уже не мало. Значит, есть результат от работы.

Комментарии


Войти или Зарегистрироваться (чтобы оставлять отзывы)